From narrative machines to practice-based research: making the case for a digital Renaissance

Paulo Nuno Vicente


This article provides an articulation between the theoretical and conceptual implications of the embodied mind paradigm, the specific representational attributes of digital media, and why inquiry into computer-mediated communication – particularly, narrative – can and need to be expanded both from a production and reception standpoint in the face of advances in cognitive science research.


artificial intelligence, embodied mind paradigm, digital renaissance, transdisciplinarity, narrative machines

Texto Completo:



Ananny, M. & Crawford, K. (2016). Seeing without knowing: Limitations of the transparency ideal and its application to algorithmic accountability. New Media & Society, 20(3): 973-989. DOI: 10.1177/1461444816676645

Barraza, J. A. & Zak, P. J. (2009). Empathy toward strangers triggers oxytocin release and subsequent generosity. Annals of the New York Academy of Sciences, 1167: 182-189.

Bondebjerg, I. (2017). The creative mind: cognition, society and culture. Palgrave Communications, 3(1): 19. DOI: 10.1057/s41599-017-0024-1

Bordwell, D. (1985). Narration in the fiction film. Madison: University of Wisconsin Press.

Bordwell, D. (1989). Making Meaning: Inference and Rhetoric in the Interpretation of Cinema.Cambridge Massachussets: Harvard University Press.

Bruner, J. (1991). The narrative construction of reality. Critical Inquiry, 18(1): 1-22.

Candy, L. & Edmonds, E. (2018). Practice-Based Research in the Creative Arts: Foundations and Futures from the Front Line. Leonardo, 51(1): 63-69. DOI: 10.1162/LEON_a_01471

Clark, A. (1996). Being There: Putting Brain, Body, and World Together Again. Cambridge, Massachussets: MIT Press.

Dahl, L. (2016). Designing New Musical Interfaces as Research: What’s the Problem?. Leonardo, 49(1): 76-77. DOI: 10.1162/LEON_a_01118

Diakopoulos, N. (2016). Accountability in algorithmic decision making. Communications of the ACM, 59(2): 56-62. DOI: 10.1145/2844110

Dunn, J. & Clark, M. A. (2006). Life Music: The Sonification of Proteins. Leonardo, 32(1): 25-32. DOI: 10.1162/002409499552966

Edmonds, E. & Candy, L. (2010). Relating Theory, Practice and Evaluation in Practitioner Research.

Leonardo, 43(5): 470-476. DOI: 10.1162/LEON_a_00040

Edmonds, E.; Weakley, A.; Candy, L.; Fell, M.; Knott, R. & Pauletto, S. (2005). The studio as laboratory: Combining creative practice and digital technology research. International Journal of Human-Computer Studies, 63(4-5): 452-481. DOI: 10.1016/j.ijhcs.2005.04.012

Elo, M. & Luoto, M. (eds.). (2014). Senses of Embodiment: Art, Technics, Media. Bern: Peter Lang.

Gatys, L. A.; Ecker, A. S. & Bethge, M. (2017). Texture and art with deep neural networks. Current Opinion in Neurobiology, 46: 178-186. DOI: 10.1016/j.conb.2017.08.019

Geertz, C. (1973). The Interpretation of Cultures: Selected Essays. New York: Basic Books, Inc., Publishers.

Giglietto, F. & Rossi, L. (2012). Ethics and Interdisciplinarity in Computational Social Science.Methodological Innovations, 7(1): 25-36. DOI: 10.4256/mio.2012.003

Goodstadt, M. & Marti-Renom, M. A. (2017). Challenges for visualizing three-dimensional data in genomic browsers. FEBS Letters, 591(17): 2505-2519. DOI: 10.1002/1873-3468.12778

Greenfield, A. (2018). Radical technologies: the design of everyday life. London, New York: Verso.

Harari, Y. N. (2017). Homo Deus: a brief history of tomorrow. London: Vintage.

Hendler, J.; Shadbolt, N.; Hall, W.; Berners-Lee, T. & Weitzer, D. (2008). Web science: an interdisciplinary approach to understanding the web. Communications of the ACM – Web Science, 51(7): 60-69. DOI: 10.1145/1364782.1364798

Higham, J. & Hebets, E. A. (2013). An introduction to multimodal communication. Behav Ecol Sociobiol, 63: 1381-1388. DOI: 10.1007/s00265-013-1590-x

Hookway, B. (2014). Interface. Cambridge, Massachussets: The MIT Press.

Hutto, D. D. & Kirchhoff, M. D. (2015). Looking beyond the brain: Social neuroscience meets narrative practice. Cognitive Systems Research, 34-35: 5-17. DOI: 10.1016/j.cogsys.2015.07.001

Ippolito, J.; Blais, J.; Smith, O. F.; Evans, S. & Stormer, N. (2009). New criteria for new media.

Leonardo, 42(1): 71-75. DOI: 10.1162/leon.2009.42.1.71

Isenhour, J. P. (1975). The Effects of Context and Order in Film Editing. AV Communication Review, 23(1): 69-80.

Lakoff, G. & Johnson, M. (1980). Metaphors we live by. Chicago: The University of Chicago Press.

Lin, P.-Y.; Grewal, N. S.; Morin, C.; Johnson, W. D. & Zak, P. J. (2013). Oxytocin increases the influence of public service advertisements. PLOS One, 8(2). DOI: 10.1371/journal.pone.0056934

Manovich, L. (2001). The Language of New Media. Cambridge: The MIT Press.

Manovich, L. (2013). Software takes command. New York: Bloomsburry.

Marini, A.; Zettin, M. & Galetto, V. (2014). Cognitive correlates of narrative impairment in moderate traumatic brain injury. Neuropsychologia, 64: 282-288. DOI: 10.1016/j.neuropsychologia.2014.09.042

Marres, N. & Gerlitz, C. (2016). Interface Methods: Renegotiating Relations between Digital Social Research, STS and Sociology. The Sociological Review, 64(1): 21-46. DOI:


Minsky, M. (1985). The society of mind. New York: Touchstone Books.

Murray, J. H. (1997). Hamlet on the Holodeck: The future of narrative in cyberspace. Cambridge, Massachussets: The MIT Press.

Nannicelli, T. & Taberham, P. (eds.). (2014). Cognitive media theory. New York: Routledge.

Paul, C. (2015). From Immateriality to Neomateriality: Art and the Conditions of Digital Materiality.

Paper presented at the ISEA – International Symposium on Electronic Arts 2015,


Pearlman, K. (2017). Editing and Cognition Beyond Continuity. Projections, 11(2): 67-86.

Postman, N. (1985). Amusing ourselves to death: Public discourse in the age of show business. New York: Penguin Books.

Postman, N. & Weingartner, C. (1969). Teaching as a Subversive Activity. New York: Dell Publishing.

Quinn, M. & Meeker, L. D. (2001). Research set to music: the climate symphony and other sonifications of ice core, radar, DNA, seismic and solar wind data. Paper presented at the 2001 International Conference on Auditory Display, Espoo, Finland.

Rogers, R. (2013). Digital methods. Cambridge, Massachussets: The MIT Press.

Rowland, N. J. & Spaniol, M. J. (2017). Social foundation of scenario planning. Technological Forecasting and Social Change, 124: 6-15. DOI: 10.1016/j.techfore.2017.02.013

Ryan, M.-L. (2004). Will new media produce new narratives?. In M.-L. Ryan (ed.), Narrative across media: the languages of storytelling. Lincoln and London: University of Nebraska Press.

Temple, M. D. (2017). An auditory display tool for DNA sequence analysis. BMC Bioinformatics, 18(221). DOI: 10.1186/s12859-017-1632-x

Tress, B.; Tress, G.; Décamps, H. & d’Hauteserre, A.-M. (2001). Bridging human and natural sciences in landscape research. Landscape and Urban Planning, 57(3-4): 137-141. DOI: 10.1016/S0169-2046(01)00199-2

Varela, F. J.; Thompson, E. & Rosch, E. (1991). The embodied mind: cognitive science and human experience. Cambridge, MA: MIT Press.

Venturini, T. & Latour, B. (2009). The Social Fabric: Digital footprints and quali-quantitative methods. Paper presented at the Proceedings of Futur en Seine – The Digital Future of the City.

Venturini, T.; Munk, A. & Meunier, A. (2016). Data-Sprints: a public approach to digital research. In C. Lury, P. Clough, M. Michael, R. Fensham, S. Lammes, A. Last & E. Uprichard (eds.), Interdisciplinary Research Methods (forthcoming).

Wardrip-Fruin, N. & Harrigan, P. (eds.) (2004). First Person. Cambridde, Massachussets: The mit Press.

Wilson, R. A. & Foglia, L. (2017). Embodied Cognition. In E. N. Zalta (ed.), The Stanford Encyclopedia of Philosophy (Spring 2017 Edition). Metaphysics Research Lab, Stanford University.

Yang, M.; Wenting, T.; Qu, Q.; Zhao, Z.; Chen, X. & Zhu, J. (2018). Personalized response generation by Dual-learning based domain adaptation. Neural Networks, 103: 72-82. DOI: 10.1016/j.neunet.2018.03.009

Young, K. & Saver, J. L. (2001). The neurology of narrative. SubStance, 30(94/95): 72-84.

Zhou, Y.; Huang, C.; Hu, Q.; Zhu, J. & Tang, Y. (2018). Personalized learning full-path recommendation model based on LSTM neural networks. Information Sciences, 444: 135-152. DOI: 10.1016/j.ins.2018.02.053


  • Não há apontadores.

Licença URL: