DOI: 10.25768/fal.ec.n29.a04

On software and television: Analyzing a minimal process for software
requirements specification by TV broadcasters

Carlos Eduardo Marquioni
Programa de Mestrado e Doutorado em Comunicacao e Linguagens, Universidade Tuiuti do Parand

E-mail: cemarquioni@uol.com.br

Abstract

In this paper it is addressed the theme of software
applications (apps) development and supply by TV
broadcasters in order to synchronize the ads of TV
shows’ sponsors between multiple screens. That
sync is required because audience is using multiple
gadgets to watch TV (for example, during the materi-
alization of viewers’ second screen experience). Al-
though broadcasters’ supply of apps to the audience
constitutes an alternative to the ads sync, such sup-
ply requires a previous software development. The
execution of a minimal set of activities to software

development (particularly to software requirements
specification) is analyzed in this paper, observing
that such activities should minimize impacts in the
typical production processes of TV to mitigate the
risk of broadcasters losing their focus on TV content
production while developing the apps. The presen-
tation of (i) Software Engineering processes’ tailor-
ing and of (ii) agile methods contributes to analyze
a minimal process for software requirements speci-
fication.

Keywords: TV production; requirements engineering; television software studies; software engineering;
processes’ tailoring; agile methods.

Introduction

N this paper it is presented what seems to constitute an extension of Production Studies regarding
I TV processes. Such extension, provisionally entitled by the author of this paper as felevision
software studies, is under development in an ongoing research project that applies an interdis-
ciplinary framework encompassing TV Production Studies, Software Engineering (requirements
engineering) and Project Management. Particularly this article addresses an outline of felevision
software studies regarding the software requirements specification by TV broadcasters. Such spec-
ification is necessary to broadcasters be able to supply the audience with applications (from here
apps) that sync the ads of TV shows’ sponsors between multiple screens. Indeed, the sync seems

Data de submissao: 2018-08-21 . Data de aprovagdo: 2018-11-17.

A Revista Estudos em Comunica¢do é financiada por Fundos FEDER através do Programa Operacional Fac-
tores de Competitividade — COMPETE e por Fundos Nacionais através da FCT — Fundacdo para a Ciéncia e a
Tecnologia no ambito do projeto Comunicagdo, Filosofia e Humanidades (LabCom.IFP) UID/CCI/00661/2013.

p H LABCOM.IFP
F‘ I () COMUNICAGAO, FILOSOFIA E HUMANIDADES
ll l) UNIDADE DE INVESTIGAGAQ

Tandagio par 3 Cléncia ¢ 2 Tecnologia COMPETE UNIVERSIDADE DA BEIRA INTERIOR
Estudos em Comunicagdo n° 29, 53-64

UNIAO EUROPEIA
Fundo Europes

UNIVERSIDADE
BEIRA INTERIO)

Dezembro de 2019

Carlos Eduardo Marquioni

applicable in the case of second screen experience (presented later in this article), as well as in
the case of software development to support other forms of content distribution (like in the TV
everywhere platform, that also needs the usage of an app).

However, to supply an app, it is necessary to develop it. And such development, when it is
considered the process of TV show production, has associated the risk of deviate the broadcasters’
focus: from TV content production to software development. Analysis and reflections related
to an alternative to mitigate such risk are presented in this paper, considering the definition of
a minimal requirements specification process that encompasses notions of Software Engineering
processes’ tailoring and agile methods. Before presenting the alternative itself, there is the need
of explanations related to (i) the general context analyzed in this paper, and to the associated (ii)
need of ads sync.

The (i) general context of this paper considers the second screen experience in Brazilian ter-
restrial commercial television, as well as the relation between the audience, broadcasters and ad-
vertisers (social actors of televisual ecosystem). Regarding second screen, it is worth noting that
the associated experience encompasses a complex scenario related to cultural aspects. The com-
plexity of the scenario can be observed when considering culture as a whole way of life that has
its meanings redefined (in an in process redefinition) (Williams, 1989: 8) by the social actors
when these actors have contact with (and use) cultural materialities all over the years — or in the
duration. The understanding of the scenario involves also observing that to viewers, watching TV
according to the broadcasters’ defined TV shows schedule continues to be an effective practice in
some countries. This is the case in Brazilian terrestrial commercial TV.

As a preliminary information related to terrestrial commercial television in Brazil, it can be
pointed that Brazilian audience watches TV in “flow” (Williams, 2005: 89-90) during about “four
and a half hours a day”, as Carlos Safini (senior executive of Globo Play’s TV Everywhere service
in 2016) stated during his panel at CIAB Febraban in 2016. Thus, televisual media maintains its
cultural relevance, what can be noticed with the audience ratings that terrestrial commercial TV
channels reach in Brazil. Additionally to the high consumption of “linear” TV (Douglas, 2015)
in the country, it is also possible to identify the existence of in progress cultural reconfigurations
that cover some obvious changes in TV ecosystem (like the images digitalization or the increase
of devices where viewers can watch TV). Associated with these obvious changes, there are more
sophisticated ones. In this paper the scenarios classified as more sophisticated are those that tend
to be almost invisible, mainly because they tend to be related to cultural redefinitions.

In the case of Brazil, data released by the “Ibope Inteligéncia [Institute informed that] Brazilian
audience is becoming a multi-screen one: 88% of Internet users watch TV while accessing the
Internet by smartphone (65%), computer (28%) or tablet (8%)” (Lopes and Greco, 2016: 139;
my emphasis). While it is possible to notice that more people are watching TV concomitantly to
Internet access (using a mobile device), the sophistication and invisibility previously mentioned
are related to the fact that the public executes such actions almost without thinking about it. It
occurs potentially due to a cultural reconfiguration related to the way of watching TV promoted by
the multi-screen aspect, which has been referenced using mainly two terms:

54 Estudos em Comunicagdo, n° 29 (dezembro, 2019)

On software and television: Analyzing a minimal process for software requirements specification by TV broadcasters

The term (i) social TV is adopted when the usage of the gadget connected to the Internet
covers audience’s posting of comments related to the aired TV show. These comments are
posted in digital social networks (like Facebook or Twitter) [...]. The (ii) second screen (or
even multiple screens) term is used to name the process executed by audience to search on the
Internet for additional information related to the content aired on TV (Marquioni, 2016: 1-2).

In this paper, the expression second screen experience is used to encompass both denomi-
nations (social TV and second screen). Additionally, it is considered that the reconfiguration in
TV experience by viewers has high relevance in the domain of broadcasters. Thus, despite such
experience is materialized by the viewers (by the audience), it potentially impacts the TV shows
production (by broadcasters) and the TV shows sponsoring (by advertisers).

To understand the relation encompassing these three social actors in televisual ecosystem in
the case of second screen experience and (ii) the associated need of ads sync between gadgets, it
can be pointed that when using a technological device connected to the Internet (and accessing
a search tool and/or a digital social network) viewers are able to materialize their second screen
experience independently from broadcasters. Such independence can eventually show to the pub-
lic (in the second screen dispositive) contents of competing broadcasters (in relation to that they
watch on TV, on the first screen), or even it can be shown to the audience ads of competing adver-
tisers (in relation to the sponsors of the TV show aired to the first screen). This scenario can be
analyzed as a complexification of zapping navigation between TV channels, because viewers can
create with the second screen experience a mosaic between devices screens (and not between TV
channels, as it occurred in the case of traditional zapping using the remote) while they material-
ize the independent experience. And such mosaic can cause a kind of “distraction” (Proulx and
Shepatin, 2012: 106) due to attention sharing between the multiple-screens, potentially impacting
the sponsorship of TV content production if advertisers consider the distraction inappropriate due
to the risk of reduction in ads reach.

As an alternative to broadcasters have some control of the scenario, and even minimize the
effects of the distraction with the use of multiple screens, it can be pointed the supply of apps
to the audience. Such supply could enable, for example, ads synchronization between screens
(Carneiro, 2012: 152).

But the app supply by broadcasters (which presupposes software development) potentially
promotes variations in the typical TV production process. And it should be observed that even
when the apps’ development is executed by subcontractors there is a need of integration and
synchronization between software development and TV production.

To address such complex scenario, in this article Software Engineering processes are presented
in the next two sections — particularly regarding the outline of apps technical specification. In
The tailoring of traditional processes and agile methods: a conceptual analysis, it is pointed
that processes’ tailoring constitutes an alternative that proportionate agility to development of
apps even when using traditional Software Engineering approaches. The section On a minimal,
tailored and agile software process specification it is presented a selection of artifacts that seems
to constitute an alternative (in both practical and conceptual terms) to software development by
broadcasters, encompassing agility and formalization. A minimal set of technical artifacts and

Estudos em Comunicagdo, n° 29 (dezembro, 2019) 55

Carlos Eduardo Marquioni

processes is considered, allowing to broadcasters to keep their business focus in producing TV
shows, as well as enable control to the apps development (even when subcontracting the software
development).

The tailoring of traditional processes and agile methods: a conceptual analysis

It is possible to notice two main perspectives in Software Engineering bibliography. One of
them is related to (i) traditional development processes, and encompasses specification, devel-
opment, tests and management; the other one regards (ii) agile development that, as its name
suggests, would propitiate agility to software development (more specifically, it would be a more
agile process than the traditional development). This agility would be reached mainly due to the
almost elimination of software specification when using the agile perspective. The main argu-
ment presented to justify the (ii) agile approach is that the specification in (i) traditional processes
cause an excessive bureaucracy that make it difficult to promote changes in requirements. Un-
doubtedly agility must be considered relevant especially in the case of software development by
broadcasters — since broadcasters’ business is TV content production (and not necessarily software
development). However, some specification is required because it is necessary to integrate and
synchronize different life cycles in order to produce different products that must be launched and
must operate concomitantly (the TV show and its app). Additionally, the requirements specifica-
tion can be considered as a critical factor when subcontracting software development (what has
become usual in Brazilian development related to TV Everywhere apps).

Thus, in this section, the perspectives (i) and (ii) are tensioned considering the hypothesis
that an ideal scenario should enable both agility and specification using a minimal requirements
specification process. The analysis of this paper allow inferring that processes’ tailoring can pro-
portionate agile development particularly because

Agile processes have emerged in certain development communities and projects as a reaction
against overly heavyweight practices [of Software Engineering], sometimes resulting from the
misinterpretation of process models and the amount of ‘ceremony’ and reporting they require
(Van Lamsweerde, 2009: 54).

It is presented below a brief theoretical analysis encompassing the (i) traditional processes and
the (ii) agile methods in order to make reflections on the viability of having agile development
even with the use of traditional processes (with software specification).

To start, it is worth mentioning a statement related to Scrum’s agile method, according to
which it “is nearly impossible to develop software in short periods of time [with agility], with
high quality and with a low budget using the ‘defined and repeatable’ process approach [of tradi-
tional perspective]” (Schwaber and Beedle, 2002: 110). The used terms defined and repeatable
refer directly the jargon of the software quality model entitled CMM (Capability Maturity Model),
which had its acronym updated in early 2000’s to CMMI (Capability Maturity Model Integration)
(Chrissis; Konrad and Shrum, 2010) and is obviously associated in the quote with the traditional
perspective of software processes. Scrum authors justify their statement informing that “processes
to manufacturing” (Schwaber and Beedle, 2002: 106) would not be applicable in the context of

56 Estudos em Comunicagdo, n° 29 (dezembro, 2019)

On software and television: Analyzing a minimal process for software requirements specification by TV broadcasters

software development. Complementally, the authors point that it would be illusory the possibility
of stable requirements in a software project: “Requirements never stop changing. It makes little
sense to pretend that this is not the case and attempt to set requirements in stone before beginning
design and construction” (Schwaber and Beedle, 2002: 34). The Agile Modeling perspective also
states that it would not be possible to “‘freeze’ the requirements [...] [, because] changes [in both
business environment and software requirements will] happen” (Ambler, 2004: 98). The practical
result associated to such statements was that some software professionals reduced the software
specification, even reaching “cycles of dueling methodologies for software ‘engineering,” without
a true foundational theory to unite them. In the end, many of these methods did not even address
the true needs of the skilled craft practitioners of the industry” (Jacobson and Seidewitz, 2014:
51).

Regarding the affirmation that requirements will change, a brief bibliographical revision al-
lows noticing that such perception was also addressed in the year 1979 (in relation to traditional
specification methods): “the freezing specification is a myth” (Demarco, 1989: 280). Later, in
early 1990’s, Requirements Engineering authors repeated the assumption: “Requirements changes
occur while the requirements are being elicited, analysed and validated and after the system has
gone into service. Requirements change is unavoidable” (Kotonya and Sommerville, 1998: 115).
The authors of traditional processes also informed that it would be expected so many changes
that stable requirements should be defined as the ones that “change more slowly than volatile re-
quirements” (Kotonya and Sommerville, 1998: 116, my emphasis) — but even stable requirements
change.

Once both perspectives, the (i) traditional development and the (ii) agile one apparently say the
same thing in relation to changes in requirements, a reflection that can be pointed is that the van
Lamsweerde statement quoted previously (regarding the misinterpretation in relation to traditional
process models) tends to be correct. Indeed, that misinterpretation seems potentially related to a
lack in bibliographic revision during agile methods definition. Because both approaches agree
with the theme of requirements, it seems possible to unify them. But the requirements change is
not the one and only conceptual coincidence between the perspectives, as presented in the next
paragraphs.

Regarding the bureaucracy pointed by the agile perspective in relation to the (i) traditional
processes, the execution of a bibliographical revision allows observing frequent statements related
to the need of process tailoring to address the issue in software development projects. However,
the obligation in the execution of activities and/or in creating all the artifacts described in the
process seems applicable only when the standard process does not provide tailoring instructions
as presented in managerial guides. Thus, it is fundamental to project managers the selection of
“development methods for their projects” (PMI and IEEE Computer Society, 2013: 17). Such
selection encompasses not only getting the methods and artifacts from the standard process, but
also the analysis of the relevance in their usage in each case:

In the context of software engineering, a process is not a rigid prescription for how to build
computer software. Rather, it is an adaptable approach that enables the people doing the work

Estudos em Comunicagdo, n° 29 (dezembro, 2019) 57

Carlos Eduardo Marquioni

(the software team) to pick and choose the appropriate set of work actions and tasks (Pressman
and Maxim, 2015: 16, italics in the original).

In an Object Oriented development, for example, the process tailoring execution must define
which artifacts (from the standard set) need to be created, even considering that the Pareto Princi-
ple is applicable to UML’s set of diagrams: ““You can model 80 percent of most problems by using
about 20 percent of the UML” (Rosenberg and Scott, 2001: 1).

To guide the process tailoring, it is possible to highlight the cMMI software quality model
previously mentioned; More specifically the IPM (Integrated Project Management) process area
defined in that model informs that its purpose is “to establish and manage the project and the
involvement of the relevant stakeholders according to an integrated and defined process that is
tailored from the organization’s set of standard processes” (Chrissis; Konrad and Shrum, 2010:
187, my emphasis). Thereby, “variability among projects is typically reduced and projects can
easily share process assets, data, and lessons learned” (Chrissis; Konrad and Shrum, 2010: 188).
Thus, process tailoring constitutes the alternative to make the process repeatable and defined; and
agility as well, as discussed below.

In the early 2000’s, the Unified Process also pointed the need of process tailoring. Particularly
the Environment Discipline of Unified Process considers taking “the organization-wide process
and further refine it for a given project. This level takes into consideration the size of the project,
the reuse of company assets, the initial cycle [...] versus the evolution cycle, and so on” (Rational
Unified Process, 2001)

To justify process tailoring, the bibliography related to traditional approaches indicates that
the adopted/defined process to a project (in relation to both, a new development or a software
maintenance in an available app) “should be agile and adaptable (to the problem, to the project,
to the team, and to the organizational culture). Therefore, a process adopted for one project
might be significantly different than a process adopted for another project” (Pressman and Maxim,
2015: 18-19; my emphasis), despite the projects use as reference the same organizational pattern
processes.

Advancing with the tension between (i) traditional processes and (ii) agile methods, it is neces-
sary to point that the agile perspective highlights the importance of adopting practices that involve
the use of “iterative, incremental development” (Schwaber and Beedle, 2002: 4). The option in
using a iterative and incremental approach was also presented previously by authors that defined
traditional processes: in the year of 1988, the spiral model approach was presented as a develop-
ment alternative that “provides the potential for rapid development of increasingly more complete
versions of the software. [...] A spiral model is divided into a set of framework activities defined
by the software engineering team” (Pressman and Maxim, 2015: 47-48). An update was presented
in late 1990’s by the authors of the Unified Process, when these authors indicated that to each soft-
ware release (Jacobson; Booch and Rumbaugh, 1999: 85-107) it would be necessary to “plan a
little”, to “specify, design and implement a little”, to “integrate, test and run each iteration a little”
(Jacobson; Booch and Rumbaugh, 1999: 87).

Again, both the traditional and agile engineering perspectives seem to point similar statements,
despite the use of different jargon.

58 Estudos em Comunicagdo, n° 29 (dezembro, 2019)

On software and television: Analyzing a minimal process for software requirements specification by TV broadcasters

Considering that an adequate usage of process tailoring tends to contribute to bureaucracy
reduction, and to speed up the process of apps development, in this paper are adopted from here
neutral terms to refer the software development context, observing that “an agile software process
must adapt incrementally” (Pressman and Maxim, 2015: 70; italics in the original). Thus, the
expressions agile development, agile modeling, agile methods, or traditional processes are avoided
from this point on, especially not to suggest value judgment - for example, that the agile approach
would characterize a better alternative in relation to traditional methods, or that traditional methods
must be avoided. After all, “No one is against agility. The real question is: What is the best
way to achieve it? [...] [And it is necessary to notice that] there is much that can be gained
by considering the best of both schools and virtually nothing to be gained by denigrating either
approach” (Pressman and Maxim, 2015: 71).

In this scenario, it is considered the possibility of defining a minimal process to software with
the “sufficient detail” (Ambler, 2004: 30). And that includes visual specification, emphasizing that
the use of the term sufficient involves establishing traceability between the abstractions of require-
ments, aiming to enable reliable impact analyzes during software maintenances. Additionally,
considering that changes are a premise (and noting that traceability among the minimal proposed
abstractions potentially contributes to the execution of impact analyzes and to subcontracting),
more than courage to embrace changes (Beck, 2004: 48-49), it is pointed that the software tech-
nical team that attends the broadcaster should have objective conditions of assessing and applying
adjustments in the process (tailoring it).

In other words, it is feasible to relate the practical experience of agile methods with the more
traditional aspects of Software Engineering, culminating with an approach that integrates the TV
production life cycle with the software development life cycle, also enabling formalism and agility
to apps development. Such approach would have the advantage of not disrupting the main pur-
pose of TV broadcasters that is to produce TV shows. Some key elements that enable a minimal
specification process and seem to use a perspective that encompasses both perspectives (processes
tailoring and agile methods) are discussed in the next section.

On a minimal, tailored and agile software process specification

In this section it is analyzed what seems to constitute an alternative to a minimal set of pro-
cesses and artifacts to apps specification by broadcasters. The main argument presented is that a
minimal process potentially enables TV channels to keep their focus on TV production (with only
the enough emphasis on the processes of software specification and development). It also would
make it possible to subcontract software development.

Regarding the mentioned minimal specification, in order to mitigate the risk related to mis-
understandings in requirements elicitation and validation, the alternative presented here considers
starting the specification process with prototypes development. This option is justified because
prototypes enable meaning generation from mental models: in practical life “We usually con-
struct a mental model when we are required to make an inference or prediction in a particular
situation” (Stone; Jarrett; Woodroffe and Minocha, 2005: 78). During the design of interfaces,
mental models are useful to apply metaphors in computational environments: Especially when

Estudos em Comunicagdo, n° 29 (dezembro, 2019) 59

Carlos Eduardo Marquioni

there are difficulties in defining requirements, the use of prototypes tends to contribute with app’s
requirements elicitation.

It is worth noting that although some software processes — such as the ICONIX (Rosenberg and
Scott, 2001) — point the creation of prototypes as Graphical User Interfaces (GUI) in the initial
stages of the requirements process, in this article it is considered that semiotically,

Even when requirements are written [specified] using natural language [in textual format], it
is possible to generate an effect of prototype to the non-technical reader; Thus, while reading
texts in natural language, the reader could be induced to think in interfaces. For such effect
to occur it is necessary to define a pattern to requirements writing, and a morphology must
be maintained: a set of special words seems adequate to establish such kind of convention
(Marquioni, 2008: 160; italics in the original).

It is necessary to highlight that this approach does not require that customers specify the re-
quirements, as defined with some agile methods (Beck, 2004: 66). In fact, the software team
should proceed with the specification, potentially helping customers to identify possibilities of
interactivity in second screen apps. After the validation of textual prototypes, visual/graphic pro-
totypes should be created. Once this two-level prototyping (considering both the textual prototype
and the graphical one as levels of prototyping) gets developed and validated, a more technical
specification of the product should be executed with the creation of a set of technical diagrams to
enable communication among software professionals. With this approach, instead of validating
the software behavior separately from the designed interface (for example executing a technical
validation with business users using the use case scenarios when developing software according
to the Object Oriented Paradigm) (Rosenberg and Scott, 2001: 38), the business user can validate
the behavior of the app from the prototyped interface, potentially increasing the probability of a
successful understanding of requirements during validation.

Complementing the creation of prototypes in this two-level approach, the technical diagrams
and process proposed by ICONIX (Rosenberg and Scott, 2001) seem appropriate for technical
software behavior specification due to, at least, three major factors: (i) the details required to
software specification in ICONIX, (ii) the use of prototyping that is aligned with the approach
presented previously in this section and (iii) the minimalist set of artifacts suggested; These three
factors are discussed below.

(i) Conceptually, ICONTX

sits somewhere in between the very large Rational Unified Process (RUP) [related to traditional
software development process] and the very small eXtreme programming [related to the agile
perspective] approach (XP). [...] [This intermediary position is reached using a] subset of the
UML [artifacts that] focuses on the core set of notations that you’ll need to do most of your
modeling work (Rosenberg and Scott, 2001: 1).

Directly associated with the content previously discussed in this same section, ICONIX sug-
gests the adoption of (ii) prototyping: from “simple line drawings of your screens” (Rosenberg
and Scott, 2001: 9), to “some rapid prototyping of the proposed system” (Rosenberg and Scott,
2001: 13). Indeed, ICONIX argues that prototypes “help define the use cases [...] [, enabling a]

60 Estudos em Comunicagdo, n° 29 (dezembro, 2019)

On software and television: Analyzing a minimal process for software requirements specification by TV broadcasters

‘proof of concept’ (Rosenberg and Scott, 2001: 54-55). Thus, after the validation of the pro-
totype, “the text [the textual technical specification of the use case model] for a given use case
should match up well with the associated GUI elements” (Rosenberg and Scott, 2001: 55). It is
established the traceability between the specification abstractions, that relates the apps interfaces
with their textual expected behavior. In such scenario, the fextual prototype previously mentioned
constitutes a step that is executed before the “simple line drawings” suggested by ICONIX.

It is worth noting that ICONTX indicates the use of UML as the language to technical specifi-
cation. This suggestion is particularly interesting considering that the understanding of the repre-
sented content is potentially increased because UML is a specification language adopted worldwide
by most software professionals since late 1990’s. However, it is possible to infer that any technical
notation that allows the modeling of dynamic and static contexts in relation to the software prod-
uct could be used to the specification. Thus, a TV channel that have already a software process
defined according to the Structured Analysis Paradigm — or to the Essential Analysis one — could
adhere to the minimal process presented in this paper, tailoring the process to suit the techniques.
This alternative seems relevant when considering the main business of broadcasters: to produce
TV content.

The subset of UML suggested by ICONIX consists of only “four different kinds of UML dia-
grams [...]. Limiting your focus to this core subset of diagrams will make a significant impact
[even] on your learning curve as you learn how to do modeling with UML” (Rosenberg and Scott,
2001: 8); Additionally, “the approach is iterative and incremental” (Rosenberg and Scott, 2001:
10). Thus, using ICONIX seems adherent to the perspective of software specification as discussed
in the previous section.

ICONIX process also reinforces the need of establishing a “sharp focus on the traceability of
requirements” (Rosenberg and Scott, 2001: 1). Staring from the textual prototypes, the decoding
of the requirements into visual prototypes and their adaptation to use cases traceability gets evi-
dent. Then, with the elaboration of the robustness diagram to fill “the gap between requirements
and detailed design” (Rosenberg and Scott, 2001: 5), traceability can be defined with relative
transparency: the boundary objects mapped in the robustness diagrams of each use case are the
interfaces on which “actors will be interacting” (Rosenberg and Scott, 2001: 38) (mapped pre-
viously as text and line draw). The boundaries are classes that realize technically the validated
prototypes, that are, in practical terms, “windows, screens, dialogs and menus” (Rosenberg and
Scott, 2001: 62).

As alast step in the minimal process specification, each one of the complexes use cases scenar-
ios (and only these scenarios), should be associated with a “sequence diagram that shows us which
object is responsible for which function in our code” (Rosenberg and Scott, 2001: 4). The choice
in modeling only the complexes scenarios using sequence diagrams is justified because in the case
of apps to materialize the second screen experience, the greatest difficulties tend to be observed
in cases of integrations between software systems (for example, when integrating the app with
legacy systems or with digital social networks features). Thus, for most cases this specification
tends not to be necessary.

The ICONIX process indicates that preferably the activities to review contents should occur
with technical staff and business users “in a room together” (Rosenberg and Scott, 2001: 53).

Estudos em Comunicagdo, n° 29 (dezembro, 2019) 61

Carlos Eduardo Marquioni

The suggestion is appropriate especially considering that to business users it tends to seem more
feasible than the client fulltime working with the team premise of eXtreme [sic] Programming — not
only because the business professional could continue to perform his/her activities in the original
business work environment, but also because the project team could request meetings with the
clients to discuss identified issues when necessary.

Figure 1 presents graphically the adaptation in ICONIX as discussed in this section, considering
the minimal specification process (and its link with code writing).

Prototype : Dynamic specification :
I |
Requirements 1 /,Q | T | | | | I e e e e e e
o ! <:© ” ! Code
1- Ble'a b|§ bI? | >’ r__ 1
2-Blablabla] 1
3-Blablabla | \ i | tfa>bihen
4-Blablabla 1 % / 1 Else
I I
1 1
L

<
Client signature Ifx<ythen

Else

End if

e e i

Fig. 1. Set of minimal artifacts for second screen apps development
Source: Adapted by the author from (Rosenberg and Scott, 2001: 09)

The approach (a) provides a minimal set of artifacts that guides the app development, and
(b) keeps the business focus of terrestrial commercial broadcasters to TV content production. In
addition, it (c) tends to contribute with the creation of a useful technical specification.

Final considerations

The ways of watching TV are been redefined with the use of multiple devices by the audience.
In order to minimize the risks of advertisers reducing the sponsorship related to TV shows pro-
duction due to the cultural reconfiguration in terrestrial commercial television ecosystem, it was
pointed in this paper that broadcasters could enable alternatives to the materialization of the sec-
ond screen experience by the public. An alternative is the supply of apps by the TV channels: such
apps could sync ads between screens. However, the app supply tends to complexify the typical TV
production process, due to the execution of activities related to software development life cycle
during the TV production life cycle. To minimize impacts it could be defined a minimal software
process (preferably considering the synchronization of TV production and software development
life cycles). That minimal software process potentially mitigates the risk of broadcasters to deviate
their focus from TV content production business. Instead of imposing the usage of a traditional

62 Estudos em Comunicagdo, n° 29 (dezembro, 2019)

On software and television: Analyzing a minimal process for software requirements specification by TV broadcasters

method of specification or an agile one, this paper pointed that it would be preferable to apply
process tailoring to the development of apps, leading agility to software development. In this
sense, adaptations in ICONIX process constitute an interesting technical alternative. The project
conducted by the author of this paper is on the run, investigating not only technical aspects (as
those addressed in the present article), but also management alternatives to orchestrate the whole
scenario.

The continuity of the research seems relevant because it is possible to infer that viewers can
get an upgrade status in the in progress reconfiguration of the TV ecosystem context. Indeed, it
seems possible to notice a kind of migration from an audience tuned on the TV channel, to an
audience connected to the TV channel. This last one can enable an even more close relationship
with the broadcasters, even contributing to the redefinition of sponsoring the TV production (for
example, with the usage of big data resources). The minimal software requirements specification
process related to the supply of apps by broadcasters seems to be fundamental to advance with
such migration and redefinition.

References

Ambler, S. (2004). Modelagem Agil: prdticas eficazes para a Programagcdo eXtrema e o Processo
Unificado. Porto Alegre: Bookman.

Beck, K. (2004). Programacdo eXtrema (XP) explicada: acolha as mudancas. Porto Alegre:
Bookman.

Carneiro, R. (2012). Publicidade na TV digital: um mercado em transformacdo. Sao Paulo:
Aleph.

Chrissis, M.; Konrad, M. & Shrum, S. (2010). CMMI for Development: guidelines for process
integration and product improvement. Boston: Addison-Wesley.

Demarco, T. (1989). Andlise estruturada e especificacdo de sistema. Rio de Janeiro: Campus.

Douglas, P. (2015) Future of television: your guide to creating TV in the new world. Studio City:
Michael Wiese Productions.

Jacobson, L.; Booch, G. & Rumbaugh, J. (1999). The Unified Process Development Process: the
complete guide to the Unified Process from the original designers. New Jersey: Addison-
Wesley.

Jacobson, I. & Seidewitz, E. (2014). A New Software Engineering. Communications of the ACM
(The Association for Computing Machinery), 57(12): 49-54.

Kotonya, G. & Sommerville, I. (1998). Requirements Engineering: processes and techniques.
West Sussex: John Wiley & Sons.

Lopes, M. & Greco C. (2016). Brasil: a “TV transformada’ na fic¢do televisiva brasileira. In M.
Lopes & G. Orozco (orgs.), (Re)lnvencdo de Géneros e Formatos da Ficgdo Televisiva. Porto
Alegre: Sulina.

Marquioni, C. (2008). Técnico vs. usudrio: uma andlise do processo comunicacional na Engen-
haria de Requisitos de Software. Curitiba: UTP.

Estudos em Comunicagdo, n° 29 (dezembro, 2019) 63

Carlos Eduardo Marquioni

Marquioni, C. (2016). Sobre o desenvolvimento de aplicativos de segunda tela para a TV com-
ercial: a sincronizagdo de ciclos de vida e a emergéncia de uma audiéncia conectada (notas
iniciais de pesquisa). Proceedings of the 34th Congresso Brasileiro de Ciéncias da Comuni-
cagdo — Intercom 2016. Sao Paulo, 4th-7th September.

PMI & IEEE Computer Society. (2013). Software Extension to the PMBOK Guide Fifth Edition.
Atlanta: Project Management Institute, Inc..

Pressman, R. & Maxim, B. (2015). Software Engineering: a practitioner’s approach. New York:
McGraw-Hill.

Proulx, M. & Shepatin, S. (2012). Social TV: How Marketers Can Reach and Engage Audiences
by Connecting Television to the Web, Social Media, and Mobile. New Jersey: John Wiley &
Sons.

Rational Unified Process. (2001). Rational Software, w/l.

Rosenberg, D. & Scott, K. (2001). Applying use case driven object modeling with UML: an
annotated e-commerce example. New Jersey: Addison-Wesley.

Schwaber, K. & Beedle, M. (2002). Agile software development with Scrum. New Jersey: Prentice
Hall.

Stone, D.; Jarrett, C.; Woodroffe, M. & Minocha, S. (2005). User interface design and evaluation.
San Francisco: Morgan Kaufmann Publishers.

Van Lamsweerde, A. (2009). Requirements Engineering: From System Goals to UML Models to
Software Specifications. Glasgow: John Wiley & Sons.

Williams, R. (1989). Culture is ordinary. In R. Gable (ed.), Resources of Hope: Culture, Democ-
racy, Socialism. London: Verso.

Williams, R. (2005). Television: Technology and Cultural Form. Padstow: Routledge Classics.

64 Estudos em Comunicagdo, n° 29 (dezembro, 2019)

